AVALIAÇÃO DO POTENCIAL DA CRIAÇÃO DE JUVENIS DE TAINHA Mugil sp, EM MEIO HETEROTRÓFICO¹

Roberta Lanziani Pereira², Andréa Ferretto da Rocha^{3,4}, Luís André Sampaio⁴, Paulo Cesar Abreu⁴, Wilson Wasielesky⁴, Marcelo Borges Tesser⁴

Introdução:

O sistema de produção heterotrófica de peixes e camarões é baseado na utilização de bactérias heterotróficas e microalgas em flocos em condições controladas no viveiro de produção. Essas bactérias utilizam as excretas dos organismos aquáticos para a produção de nova biomassa retirando compostos indesejáveis do meio produtivo (Wasielesky et al., 2006). A criação de tainhas em sistema de bioflocos pode ser uma boa alternativa, pois elas apresentam hábito alimentar, onívoro, adequado para aproveitamento dos bioflocos. O objetivo desse estudo foi avaliar o potencial de criação de tainhas em sistemas sem renovação de água, bem como verificar se as tainhas podem contribuir para formar bioflocos.

Materiais e Métodos:

Juvenis de tainha (*Mugil* sp) com peso médio de 4,55±0,15 g foram estocados em tanques de 200L (0,2 tainha/L), divididos em dois tratamentos: 1) tainhas criadas formando floco (T), e 2) tainhas criadas com bioflocos provenientes do cultivo de camarões (TFC). Foram utilizados dois tratamentos controles: um onde o biofloco era produzido sem a presença de animais (SEM) e outro contendo camarões (0,2 camarões/L) produzindo flocos (CAM), durante 21 dias.

Os flocos microbianos foram formados com fertilizações orgânicas realizadas de acordo com a metodologia de Avnimelech (1999). As fertilizações foram feitas com melaço de cana de açúcar e os nutrientes da própria ração fornecida aos animais, favorecendo uma relação carbono-nitrogênio (C/N) de 20:1. A concentração de amônia foi analisada de acordo com Strickland e Parsons (1972). O volume do biofloco foi determinado com um cone Imhoff, marcando o volume de flocos em 1L de amostra de água após 20 minutos de

¹ Projeto de iniciação científica de R.L.P.

² Aluna do Curso de Ciências Biológicas e Bolsista de Iniciação Científica

³ Docentes do Instituto de Oceanografia - Furg

sedimentação (Eaton et al., 1995). O experimento teve delineamento inteiramente casualizado com 4 tratamentos e 3 repetições cada. A análise de variância de uma via foi aplicada aos resultados e quando detectadas diferenças o teste de Tukey foi utilizado. Todas as análises estatísticas foram feitas com nível de significância de 95% com auxílio do "software" STATISTICA 7.0.

Resultados e Discussão:

Ao final do experimento foi verificado que a quantidade de flocos no tratamento TFC (76,66±5,77ml/L) foi significativamente superior ao tratamento T (18,66±5,50 ml/L). O tratamento sem animais formou apenas 3,1±2,47ml/L. (Figura 1)

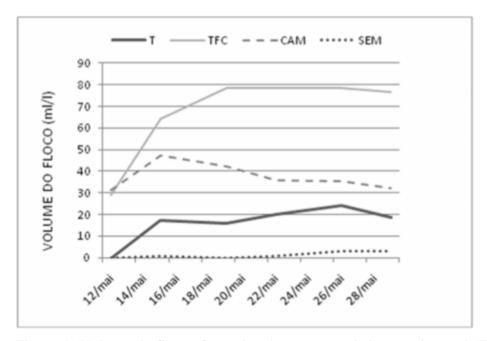


Figura 1. Volume de flocos formados durante o período experimental (T- tainha formando floco, TFC tainha criada com biofloco de camarão, CAM – criação de camarão com biofloco, SEM- formação de biofloco sem animais)

Após o início do experimento, foi observada elevação da concentração de amônia total nos tratamentos T e SEM. A concentração de amônia foi reduzida no tratamento T, demonstrando que organismos presentes no biofloco foram capazes de remover esse composto do meio (Figura 2).

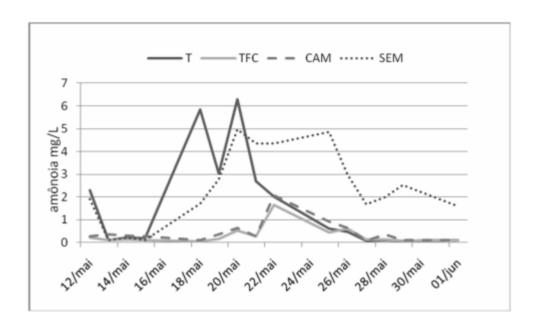


Figura 2. Concentração de amônia (mg/l) total durante o período experimental. (T- tainha formando floco, TFC tainha criada com biofloco de camarão, CAM – criação de camarão com biofloco, SEM- formação de biofloco sem animais)

Conclusão

Apesar da menor quantidade de bioflocos no tratamento T em relação ao TFC e CAM, os resultados evidenciam a formação de bioflocos microbianos no cultivo das tainhas, que podem servir como alimento para esses juvenis.

Bibliografia

AVNIMELECH, Y., KOCHVA, M., DIAB, S., 1994. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Israeli Journal of Aquaculture-Bamidgeh 46 (3), 119–131.

AZIM, M.E., LITTLE, D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (*Oreochromis niloticus*). Aquaculture 283, 29–35.

- BURFORD, M. A., THOMPSON, P. J., MCINTOSH, R. P., BAUMAN, R. H., PEARSON, D. C. 2003. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219, 393–411
- EATON, A.D., CLESERCI, L.S., GREENGERG, A.E. (Eds.). 1995. Standard Methods for the Examination of Water and Waste Water, 10th edition. Amer. Pub. Health Assoc., Washington D.C.
- STRICKLAND, J.D.H.; PARSONS, T.R. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada. 2. ed. Ottawa: Bulletin 167.
- WASIELESKY, W.; ATWOOD, H.; STOKES, A.; BROWDY, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp *Litopenaeus vannamei*. Aquaculture, 258: 396-403.